Titanium(IV) Bromide and Boron(III) Tribromide Promoted Baylis-Hillman Reactions of Arylaldehydes with But-3-yn-2-one

by Min Shi* and Chun-Jiang Wang

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032 China (E-mail: mshi@pub.sioc.ac.cn)

The reaction of arylaldehydes with but-3-yn-2-one in the presence of the Lewis acids titanium(IV) bromide (TiBr₄) or boron(III) tribromide (BBr₃) (1.4 equiv.) can be drastically affected by the reaction temperature. When the reaction was carried out at $\leq -20^{\circ}$, the brominated compound 1 was obtained as the major product. However, when the reaction was carried out at room temperature (20°) , both the brominated compound 1 and dibrominated compound 2 were formed as major products. The substituent on the phenyl ring can affect the (E) / (Z) ratio. Moreover, with 2 as the substrate, the Pd-catalyzed allylic substitution and Suzuki-type coupling reaction have been examined.

Introduction. - The *Baylis-Hillman* reaction has become a topic of intense interest for synthetic chemists because the resulting adducts may have several functional groups available for numerous further transformations [1] [2]. In this area, we have reported that the combination of Lewis bases such as chalcogenides, amines, or quaternary ammonium halides with the Lewis acid TiCl₄ can significantly increase the rate of this reaction and give the corresponding chlorinated products and the elimination products (Z)-olefins at different reaction temperatures [3] [4]. More recently, the reaction of aldehydes with but-3-yn-2-one in the presence of $TiCl₄$ has been reported by Li and *Kataoka* [5] [6]. This new process could afford an efficient approach to β -chloro *Baylis*-Hillman adducts. From the point of view of synthetic chemistry, the α -bromomethylene aldols 1 are more useful than the corresponding α -chloromethylene aldols because they can be more easily subjected to the transition-metal-catalyzed reactions such as allylic substitution and Suzuki coupling reactions. However, only one example in which TiBr_4 was used as the *Lewis* acid for this reaction has been examined at room temperature in these reports [5] [6]. Thus, we more carefully examined the reaction of arylaldehydes with but-3-yn-2-one in the presence of the Lewis acids TiBr_4 or BBr_3 (1.4 equiv.) at different temperatures. We found that Lewis bases such as $SMe₂$, amines, and quaternary ammonium halides did not affect this reaction at all, but that the reaction temperature strongly influenced both the reaction products and stereoselectivity $((E)/(Z)$ ratio) of this reaction.

Results and Discussion. – At low temperature ($\leq -20^{\circ}$), only α -bromomethylene aldols 1 were obtained in moderate to high yields in the presence of TiBr₄ or BBr₃ (1.4 equiv.) (Scheme 1); TiBr₄ was more effective than BBr₃ in this reaction (Table 1, *Entries* $1-2$). For arylaldehydes having a strong electron-withdrawing group on the phenyl ring, the reaction proceeded quickly at -78° to give 1 in high yields (*Table 1*,

Entries $2 - 4$). However, other arylaldehydes needed higher temperature and longer time to complete the reaction (Table 1, Entries $5-8$). The geometry of the major isomer was determined by ¹ H-NMR NOESY spectroscopic data and comparison of the spectral data with those of the corresponding α -chloromethylene aldols [5][6].

Entry	R	Lewis acid	Temp. [°]	Time [h]	Yield ^b) [%]	(E)/(Z)
	p -NO ₂ Ph	BBr ₃	-78	40	54	19:1
	p -NO ₂ Ph	TiBr ₄	-78	40	90	19:1
3	m -NO ₂ Ph	TiBr ₄	-78	40	61	1:1.3
4	$o-NO2Ph$	TiBr ₄	-78	40	76	1:6.6
	p -ClPh	TiBr ₄	-78	72	40	19:1
6	p -ClPh	TiBr ₄	-20	72	80	19:1
	Ph	TiBr ₄	-20	72	79	19:1
8	p -EtPh	TiBr ₄	-20	72	81	19:1

Table 1. Low-Temperature Reaction of Arylaldehydes with But-3-yn-2-one in the presence of TiBr₄ or BBr₃^a)

At room temperature (20 $^{\circ}$), we found that, besides *a*-bromomethylene aldols **1**, dibrominated compounds 2 could be obtained at the same time when 1.4 equiv. of $TiBr₄$ or BBr_3 was used as the Lewis acid (Scheme 2). As can be seen from Table 2, 1 and 2 were obtained in the same $(E)/(Z)$ ratios and similar yield in the presence of 1.4 equiv.

Helvetica Chimica Acta – Vol. 85 (2002) 843

Entry	R	Lewis acid	Time [h]	Yield ^b) $1\,[\%]$	(E)/(Z)	Yield ^b 2^{96}	(E)/(Z)
	p -NO ₂ Ph	BBr ₃	24	5	19:1	20	1:19
2	p -NO ₂ Ph	TiBr ₄	24	43	19:1	20	1:19
3	m -NO ₂ Ph	TiBr ₄	24	41	19:1	20	1:19
$\overline{4}$	$o-NO2Ph$	TiBr ₄	24	36	8:1	32	1:8
.5	p -ClPh	TiBr ₄	30	16	19:1	28	1:19
6	Ph	TiBr ₄	40	17	3:1	20	1:3
τ	p -EtPh	TiBr ₄	40	29	1:1	22	1:1

Table 2. Room-Temperature Reaction of Arylaldehydes with But-3-yn-2-one in the Presence of TiBr₄ and BBr₃^a)

^a) Aldehyde/TiCl₄/but-3-yn-2-one $1:1.4:2.$ ^b) Isolated yields.

Figure. *X-Ray crystal structure of* (Z) -2a

of Ti ${\rm Br}_4$ at 20° . In general, the α -bromomethylene aldols ${\bf 1}$ were obtained preferentially as the (E) -isomers and dibrominated compounds 2 as the (Z) -isomers. The X-ray crystal structure of $2a$ was determined (*Fig.*). For benzaldehyde or *p*-ethylbenzaldehyde, the $(E)/(Z)$ selectivity is low (*Table 2, Entries 6, 7*). The substituents on the Ph ring can affect the $(E)/(Z)$ selectivity.

To clarify the mechanism of formation of 2, we carried out the direct reaction of 1a $((E)/(Z) = 19:1)$ with 1.4 equiv. of TiBr₄ at room temperature (*Scheme 3*). We found that the corresponding 2a was exclusively obtained in the same $(E)/(Z)$ ratio in 10 h. Based on this result, it is clear that product 2 is derived from 1 by the further reaction of

1 with TiBr₄ at room temperature (*Scheme 3*). We also confirmed by using 2.5 equiv. of $TiBr₄$ at room temperature that the dibrominated compound 2 could be obtained as the major product (Scheme 4), but, in the reaction of arylaldehydes with but-3-yn-2-one in the presence of excess TiCl₄ at 20° , the corresponding dichlorinated products could not be produced at all. Thus, for the formation of 2, we believe that, at room temperature, the bromide at Ti can directly attack the C-atom bearing the OH group to give the dibrominated compound 2, because Br^- is usually more nucleophilic than Cl^- .

The Pd-catalyzed allylic substitution and Suzuki-type coupling reaction were examined with 2a (Scheme 5). It is very interesting to find the benzylic bromide and vinylic bromide replaced by nucleophiles (the Suzuki-type coupling reaction of boronic acids with benzyl bromide has been reported before [7]). We are currently optimizing the reaction conditions and examining the scope and limitations of these novel Pdcatalyzed reactions.

Conclusions. – We found that the TiBr₄ or BBr₃ promoted *Baylis-Hillman* reaction is not as simple as has been suggested in earlier reports. The reaction temperature and amount of the Lewis acid employed can drastically affect the reaction products. We first

$$
2a + CH_{2}(CO_{2}Et)_{2}
$$

\n
$$
Pd(OAc)_{2} (0.1 \text{equiv.}), PPh_{3} (0.4 \text{equiv.})
$$

\n
$$
P-NO_{2}PK
$$

\n
$$
P
$$

 K_3PO_4 3H₂O (3.3 equiv.)

disclosed that, at room temperature, both the α -bromomethylene aldols 1 and dibrominated products 2 were formed as the reaction products and the dibrominated products 2 could be obtained as the major product with a large excess of TiBr_4 . Efforts are underway to elucidate the mechanistic details of this reaction and to discover its scope and limitations.

Experimental Part

General. Commercially obtained reagents were used without further purification. Org. solvents were dried by standard methods when necessary. All reactions were monitored by TLC with Huanghai GF_{254} silica-gelcoated plates. Flash column chromatography (FC) was carried out with $200 - 300$ -mesh silica gel. M.p.: Yanagimoto micro-melting-point apparatus; uncorrected. IR Spectra: in CHCl₃; ν in cm⁻¹. ¹H-NMR Spectra: Bruker AM-300 spectrometer; 300 MHz in CDCl₃ with Me₄Si as internal standard; δ in ppm, J in Hz. MS: Hewlett-Packard HP-5989; $(m/z$ (rel.%). HR-MS: Finnigan $MA +$ mass spectrometer. Some of the solid compounds reported in this paper gave satisfactory CHN microanalyses with a Carlo-Erba 1106 analyzer.

Typical Procedure for Low-Temperature Reaction: Preparation of 1a. To a soln. of TiBr₄ (257 mg, 0.70 mmol) in CH₂Cl₂ (1.0 ml) was added a soln. of p-nitrobenzaldehyde (76 mg, 0.5 mmol) in CH₂Cl₂ (1.0 ml), and, then, but-3-yn-2-one (78 μ , 1.0 mmol) was added at -78° . The mixture was kept for 48 h at -78° . The reaction was quenched by addition of sat. aq. NaHCO₃ (1.0 ml) and filtered. The filtrate was extracted $2\times$ with CH_2Cl_2 (5.0 ml) and dried (MgSO₄). The solvent was removed under reduced pressure and the residue was purified by FC (AcOEt/petroleum ether 1:5) to give (E) -1a (135 mg, 90%); a small amount of (Z) -1a was also formed but could not be isolated. Colorless solid. (E) -1a: M.p. 120–122°. IR: 1666 (C=O). ¹H-NMR: 2.35 (s, Me) ; 6.01 $(s, 1 H)$; 7.56 $(d, J = 8.7, 2 \text{ arcm}$. H); 7.85 $(s, 1 H)$; 8.20 $(d, J = 8.7, 2 \text{ arcm}$. H). EI-MS: 298 (0.51, $[M-1]^+$), 220 ($[M-79]^+$), 43 (100, $[M-256]^+$). Anal. calc. for $C_{11}H_{10}BrNO_4$: C 44.00, H 3.33, N 4.62; found: C 44.28, H 3.43, N 4.62.

Typical Procedure for the Room-Temperature Reaction: Preparation of 1a and 2a. As described for 1a above, except reaction performed at 20 $^{\circ}$ to give 1a (36 mg, 20%) as a colorless solid and 2a (64 mg, 43%) as a yellowish solid.

Data of (Z)-2a: M.p. 121 – 124°. IR: 1682 (C=O). ¹H-NMR: 2.35 (s, Me); 6.50 (s, 1 H); 7.66 (d, J = 8.7, 2 arom. H); 7.79 (s, 1 H); 8.16 (d, J = 8.7, 2 arom. H). EI-MS: 362 (4.90, $[M+1]^+$), 282 (40, $[M-79]^+$), 43 (100, $[M-318]$). Anal. calc. for C₁₁H₉Br₂NO₃: C 36.36, H 2.48, N 3.86, found: C 36.72, H 2.61, N 3.96.

Data of (E)-2a: M.p. 121 – 124°. IR: 1682 (C=O). ¹H-NMR: 2.68 (s, Me); 6.67 (s, 1 H); 7.43 (s, 1 H); 7.68 $(d, J = 8.5, 2 \text{ arom. H})$; 8.37 $(d, J = 8.5, 2 \text{ arom. H})$. EI-MS: 362 (1.44, $[M+1]^+$), 282 (3.76, $[M-79]^+$), 43 (100, $[M-318]^+$). Anal. calc. for C₁₁H₉Br₂NO₃: C 36.36, H 2.48, N 3.86; found: C 36.72, H 2.61, N 3.96.

Crystal-Structure Data of $2a$: empirical formula, C₁₁H₉O₃NBr₂; formula weight, 386.29; crystal color, colorless; habit, prismatic; dimensions, $0.20 \times 0.20 \times 0.30$ mm; crystal system, orthorhombic; lattice type, primitive; lattice parameters, $a = 13.988(4)$ Å, $b = 17.119(6)$ Å, $c = 10.524(4)$ Å, $V = 2520(1)$ Å³; space group: Pbca(#61); $Z = 8$; $D_{\text{calc}} = 1.018$ g/cm³; $F_{000} = 792.00$; $\mu(\text{MoK}\alpha) = 16.44 \text{ cm}^{-1}$; residuals: R ; $Rw = 0.045$; 0.046.

We thank the State Key Project of Basic Research (Project 973, No. G2000048007) and the National Natural Science Foundation of China (No. 20025206) for financial support.

REFERENCES

- [1] a) E. Ciganek, Org. React. 1997, 51, 201; b) D. Basavaiah, P. D. Rao, R. S. Hyma, Tetrahedron 1996, 52, 8001; c) S. E. Drewes, G. H. P. Roos, Tetrahedron 1988, 44, 4653.
- [2] a) L. J. Brzezinski, S. Rafel, J. M. Leahy, *J. Am. Chem. Soc.* 1997, 119, 4317; b) I. E. Marko, P. G. Giles, N. J. Hindley, Tetrahedron 1997, 53, 1015; c) H. Richter, G. Jung, Tetrahedron Lett. 1998, 39, 2729; d) A. G. M. Barrett, A. S. Cook, A. Kamimura, Chem. Commun. 1999, 2533; e) E. P. Kunidig, L. H. Xu, P. Romanens, G. Bernardinelli, Tetrahedron Lett. 1993, 34, 7049; f) V. Aggarwal, A. Mereu, G. J. Tarver, R. McaCague, J. Org. Chem. 1998, 63, 7183; g) M. Kawamura, S. Kobayashi, Tetrahedron Lett. 1999, 40, 1539; h) T. Kataoka, T. Iwama, S. Tsujiyama, T. Iwamura, S. Watanaba, Tetrahedron 1998, 54, 11813; i) T. Kataoka, T. Iwama, S. Kinoshita, Y. Tsujiyama, T. Iwamura, S. Watanabe, Synlett. 1999, 197; j) T. Kataoka, T. Iwama, S. Tsujiyaa, K. Kanematsu, T. Iwamura, S. Watanabe, Chem. Lett. 1999, 257; k) T. Kataoka, T. Iwama, S. Tsujiyama, Chem.

Commun. 1998, 197; l) T. Iwama, S. Tsujiyama, H. Kinoshita, K. Kanamatsu, Y. Tsurukami, T. Iwamura, S. Watanabe, T. Kataoka, Chem. Pharm. Bull. 1999, 47, 956; m) M. Ono, K. Nishimura, Y. Nagaoka, K. Tomioka, Tetrahedron Lett. 1999, 40, 1509; n) Y. Nagaoka, K. Yomioka, J. Org. Chem. 1998, 63, 6428; o) G. Li, J. Gao, H.-x. Wei, M. Enright, Org. Lett. 2000, 2, 617; p) T. Kataoka, H. Kinoshita, T. Iwama, S. Tsujiyama, T. Iwamura, S. Watanabe, O. Muraoka, G. Tanabe, Tetrahedron 2000, 56, 4725.

- [3] M. Shi, J.-K. Jiang, Tetrahedron 2000, 56, 4793.
- [4] a) M. Shi, J.-K. Jiang, Y.-S. Feng, Org. Lett. 2000, 2, 2397; b) M. Shi, Y.-S. Feng, J. Org. Chem. 2001, 66, 406.
- [5] H.-X. Wei, S.-H. Kim, T. D. Caputo, D. W. Purkiss, G. Li, Tetrahedron 2000, 56, 2397.
- [6] T. Kataoka, H. Kinoshita, S. Kinoshita, T. Iwamura, S. Watanabe, Angew. Chem., Int. Ed. 2000, 39, 2358.
- [7] a) S. Chowdhury, P. E. Georgghiou, Tetrahedron Lett. 1999, 40, 7599; b) H. Chen, M.-Z. Deng, J. Chem. Soc., Perkin Trans 1, 2000, 1609.

Received March 5, 2001